56 research outputs found

    Forensic SNP genotyping using nanopore MinION sequencing

    Get PDF
    One of the latest developments in next generation sequencing is the Oxford Nanopore Technologies' (ONT) MinION nanopore sequencer. We studied the applicability of this system to perform forensic genotyping of the forensic female DNA standard 9947 A using the 52 SNP-plex assay developed by the SNPforID consortium. All but one of the loci were correctly genotyped. Several SNP loci were identified as problematic for correct and robust genotyping using nanopore sequencing. All these loci contained homopolymers in the sequence flanking the forensic SNP and most of them were already reported as problematic in studies using other sequencing technologies. When these problematic loci are avoided, correct forensic genotyping using nanopore sequencing is technically feasible

    Massively parallel sequencing of micro-manipulated cells targeting a comprehensive panel of disease-causing genes : a comparative evaluation of upstream whole-genome amplification methods

    Get PDF
    Single Gene Disorders (SGD) are still routinely diagnosed using PCR-based assays that need to be developed and validated for each individual disease-specific gene fragment. The TruSight One sequencing panel currently covers 12 Mb of genomic content, including 4813 genes associated with a clinical phenotype. When only a limited number of cells are available, whole genome amplification (WGA) is required prior to DNA target capture techniques such as the TruSight One panel. In this study, we compared 4 different WGA methods in combination with the TruSight One sequencing panel to perform single nucleotide polymorphism (SNP) genotyping starting from 3 micro-manipulated cells. This setting simulates clinical settings such as day-5 blastocyst biopsy for Preimplantation Genetic Testing (PGT), liquid biopsy of circulating tumor cells (CTCs) and cancer-cell profiling. Bulk cell samples were processed alongside these WGA samples to serve as a performance reference. Target coverage, coverage uniformity and SNP calling accuracy obtained using any of the WGA, is inferior to the results obtained on bulk cell samples. However, results after REPLI-g come close. Compared to the other WGA methods, the method using REPLI-g WGA results in a better coverage of the targeted genomic regions with a more uniform read depth. Consequently, this method also results in a more accurate SNP calling and could be considered for clinical genotyping of a limited number of cells

    Multiplex STR amplification sensitivity in a silicon microchip

    Get PDF
    The demand for solutions to perform forensic DNA profiling outside of centralized laboratories is increasing. We here demonstrate highly sensitive STR amplification using a silicon micro-PCR (mu PCR) chip. Exploiting industry-standard semiconductor manufacturing processes, a device was fabricated that features a small form factor thanks to an integrated heating element covering three parallel micro-reactors with a reaction volume of 0.5 mu l each. Diluted reference DNA samples (1 ng-31 pg) were amplified on the mu PCR chip using the forensically validated AmpFISTR Identifier Plus kit, followed by conventional capillary electrophoresis. Complete STR profiles were generated with input DNA quantities down to 62 pg. Occasional allelic dropouts were observed from 31 pg downward. On-chip STR profiles were compared with those of identical samples amplified using a conventional thermal cycler for direct comparison of amplification sensitivity in a forensic setting. The observed sensitivity was in line with kit specifications for both mu PCR and conventional PCR. Finally, a rapid amplification protocol was developed. Complete STR profiles could be generated in less than 17 minutes from as little as 125 pg template DNA. Together, our results are an important step towards the development of commercial, mass-produced, relatively cheap, handheld devices for on-site testing in forensic DNA analysis

    Nanopore sequencing of a forensic STR multiplex reveals loci suitable for single-contributor STR profiling

    Get PDF
    Nanopore sequencing for forensic short tandem repeats (STR) genotyping comes with the advantages associated with massively parallel sequencing (MPS) without the need for a high up-front device cost, but genotyping is inaccurate, partially due to the occurrence of homopolymers in STR loci. The goal of this study was to apply the latest progress in nanopore sequencing by Oxford Nanopore Technologies in the field of STR genotyping. The experiments were performed using the state of the art R9.4 flow cell and the most recent R10 flow cell, which was specifically designed to improve consensus accuracy of homopolymers. Two single-contributor samples and one mixture sample were genotyped using Illumina sequencing, Nanopore R9.4 sequencing, and Nanopore R10 sequencing. The accuracy of genotyping was comparable for both types of flow cells, although the R10 flow cell provided improved data quality for loci characterized by the presence of homopolymers. We identify locus-dependent characteristics hindering accurate STR genotyping, providing insights for the design of a panel of STR loci suited for nanopore sequencing. Repeat number, the number of different reference alleles for the locus, repeat pattern complexity, flanking region complexity, and the presence of homopolymers are identified as unfavorable locus characteristics. For single-contributor samples and for a limited set of the commonly used STR loci, nanopore sequencing could be applied. However, the technology is not mature enough yet for implementation in routine forensic workflows

    Forensic tri-allelic SNP genotyping using nanopore sequencing

    Get PDF
    The potential and current state-of-the-art of forensic SNP genotyping using nanopore sequencing was investigated with a panel of 16 tri-allelic single nucleotide polymorphisms (SNPs), multiplexing five samples per sequencing run. The sample set consisted of three single-source human genomic reference control DNA samples and two GEDNAP samples, simulating casework samples. The primers for the multiplex SNP-loci PCR were taken from a study which researched their value in a forensic setting using conventional single-base extension technology. Workflows for multiplexed Oxford Nanopore Technologies 1D and 1D(2) sequencing were developed that provide correct genotyping of most SNP loci. Loci that are problematic for nanopore sequencing were characterized. When such loci are avoided, nanopore sequencing of forensic tri-allelic SNPs is technically feasible

    Adjuvanting allergen extracts for sublingual immunotherapy : calcitriol downregulates CXCL8 production in primary sublingual epithelial cells

    Get PDF
    Application of allergens onto the sublingual epithelium is used to desensitize allergic individuals, a treatment known as sublingual immunotherapy. However, the response of sublingual epithelial cells to house dust mite allergen and potential tolerance-promoting adjuvants such as Toll-like receptor (TLR) ligands and calcitriol has not been investigated. In order to study this, primary sublingual epithelial cells were isolated from dogs and culturedin vitro. After 24-h incubation with aDermatophagoides farinaeextract, aDermatophagoides pteronyssinusextract, TLR2 ligands (FSL-1, heat-killed Listeria monocytogenes, Pam3CSK4), a TLR3 ligand (poly I:C), a TLR4 ligand [lipopolysaccharide (LPS)], and calcitriol (1,25-dihydroxyvitamin D-3), viability of the cells was analyzed using an MTT test, and their secretion of interleukin 6 (IL-6), IL-10, CXCL8, and transforming growth factor beta 1 (TGF-beta 1) was measured by enzyme-linked immunosorbent assay. Additionally, to evaluate its potential effect as an adjuvant, sublingual epithelial cells were incubated with calcitriol in combination with aD. farinaeextract followed by measurement of CXCL8 secretion. Furthermore, the effect ofD. farinaeand calcitriol on the transcriptome was assessed by RNA sequencing. The viability of the sublingual epithelial cells was significantly decreased by poly I:C, but not by the other stimuli. CXCL8 secretion was significantly increased byD. farinaeextract and all TLR ligands apart from LPS. Calcitriol significantly decreased CXCL8 secretion, and coadministration withD. farinaeextract reduced CXCL8 concentrations to levels seen in unstimulated sublingual epithelial cells. Although detectable, TGF-beta 1 secretion could not be modulated by any of the stimuli. Interleukin 6 and IL-10 could not be detected at the protein or at the mRNA level. It can be concluded that aD. farinaeextract and TLR ligands augment the secretion of the proinflammatory chemokine CXCL8, which might interfere with sublingual desensitization. On the other hand, CXCL8 secretion was reduced by coapplication of calcitriol and aD. farinaeextract. Calcitriol therefore seems to be a suitable candidate to be used as adjuvant during sublingual immunotherapy

    Maternal recognition of pregnancy in the horse : are MicroRNAs the secret messengers?

    Get PDF
    The signal for maternal recognition of pregnancy (MRP) has still not been identified in the horse. High-throughput molecular biology at the embryo-maternal interface has substantially contributed to the knowledge on pathways affected during MRP, but an integrated study in which proteomics, transcriptomics and miRNA expression can be linked directly is currently lacking. The aim of this study was to provide such analysis. Endometrial biopsies, uterine fluid, embryonic tissues, and yolk sac fluid were collected 13 days after ovulation during pregnant and control cycles from the same mares. Micro-RNA-Sequencing was performed on all collected samples, mRNA-Sequencing on the same tissue samples and mass spectrometry was conducted previously on the same fluid samples. Differential expression of miRNA, mRNA and proteins showed high conformity with literature and confirmed involvement in pregnancy establishment, embryo quality, steroid synthesis and prostaglandin regulation, but the link between differential miRNAs and their targets was limited and did not indicate the identity of an unequivocal signal for MRP in the horse. Differential expression at the embryo-maternal interface was prominent, highlighting a potential role of miRNAs in embryo-maternal communication during early pregnancy in the horse. These data provide a strong basis for future targeted studies

    Comparative genomics of Flavobacterium columnare unveils novel insights in virulence and antimicrobial resistance mechanisms

    Get PDF
    This study reports the comparative analyses of four Flavobacterium columnare isolates that have different virulence and antimicrobial resistance patterns. The main research goal was to reveal new insights into possible virulence genes by comparing the genomes of bacterial isolates that could induce tissue damage and mortality versus the genome of a non-virulent isolate. The results indicated that only the genomes of the virulent isolates possessed unique genes encoding amongst others a methyl-accepting chemotaxis protein possibly involved in the initial colonization of tissue, and several VgrG proteins engaged in interbacterial competition. Furthermore, comparisons of genes unique for the genomes of the highly virulent (HV) carp and trout isolates versus the, respectively, low and non-virulent carp and trout isolates were performed. An important part of the identified unique virulence genes of the HV-trout isolate was located in one particular gene region identified as a genomic island. This region contained araC and nodT genes, both linked to pathogenic and multidrug-resistance, and a luxR-gene, functional in bacterial cell-to-cell communication. Furthermore, the genome of the HV-trout isolate possessed unique sugar-transferases possibly important in bacterial adhesion. The second research goal was to obtain insights into the genetic basis of acquired antimicrobial resistance. Several point-mutations were discovered in gyrase-genes of an isolate showing phenotypic resistance towards first and second-generation quinolones, which were absent in isolates susceptible to quinolones. Tetracycline-resistance gene tetA was found in an isolate displaying acquired phenotypic resistance towards oxytetracycline. Although not localized on a prophage, several flanking genes were indicative of the gene's mobile character

    Forensic massively parallel sequencing data analysis tool: implementation of MyFLq as a standalone web- and Illumina BaseSpace®-application

    Get PDF
    Routine use of massively parallel sequencing (MPS) for forensic genomics is on the horizon. The last few years, several algorithms and workflows have been developed to analyze forensic MPS data. However, none have yet been tailored to the needs of the forensic analyst who does not possess an extensive bioinformatics background. We developed our previously published forensic MPS data analysis framework MyFLq (My-Forensic-Loci-queries) into an open-source, user-friendly, web-based application. It can be installed as a standalone web application, or run directly from the Illumina BaseSpace environment. In the former, laboratories can keep their data on-site, while in the latter, data from forensic samples that are sequenced on an Illumina sequencer can be uploaded to Basespace during acquisition, and can subsequently be analyzed using the published MyFLq BaseSpace application. Additional features were implemented such as an interactive graphical report of the results, an interactive threshold selection bar, and an allele length-based analysis in addition to the sequenced-based analysis. Practical use of the application is demonstrated through the analysis of four 16-plex short tandem repeat (STR) samples, showing the complementarity between the sequence- and length-based analysis of the same MPS data

    The presence of extracellular microRNAs in the media of cultured Drosophila cells

    Get PDF
    While regulatory RNA pathways, such as RNAi, have commonly been described at an intracellular level, studies investigating extracellular RNA species in insects are lacking. In the present study, we demonstrate the presence of extracellular microRNAs (miRNAs) in the cell-free conditioned media of two Drosophila cell lines. More specifically, by means of quantitative real-time PCR (qRT-PCR), we analysed the presence of twelve miRNAs in extracellular vesicles (EVs) and in extracellular Argonaute-1 containing immunoprecipitates, obtained from the cell-free conditioned media of S2 and Cl. 8 cell cultures. Next-generation RNA-sequencing data confirmed our qRT-PCR results and provided evidence for selective miRNA secretion in EVs. To our knowledge, this is the first time that miRNAs have been identified in the extracellular medium of cultured cells derived from insects, the most speciose group of animals
    corecore